160 research outputs found

    The Basic Algebra of Game Equivalences

    Get PDF
    We give a complete axiomatization of the identities of the basic game algebra valid with respect to the abstract game board semantics. We also show that the additional conditions of termination and determinacy of game boards do not introduce new valid identities. En route we introduce a simple translation of game terms into plain modal logic and thus translate, while preserving validity both ways game identities into modal formulae. The completeness proof is based on reduction of game terms to a certain 'minimal canonical form', by using only the axiomatic identities, and on showing that the equivalence of two minimal canonical terms can be established from these identities

    Transformations of normal form games by preplay offers for payments among players

    Full text link
    We consider transformations of normal form games by binding preplay offers of players for payments of utility to other players conditional on them playing designated in the offers strategies. The game-theoretic effect of such preplay offers is transformation of the payoff matrix of the game by transferring payoffs between players. Here we analyze and completely characterize the possible transformations of the payoff matrix of a normal form game by sets of preplay offers.Comment: 17 pages, under submissio

    From Linear to Branching-Time Temporal Logics: Transfer of Semantics and Definability

    Get PDF
    This paper investigates logical aspects of combining linear orders as semantics for modal and temporal logics, with modalities for possible paths, resulting in a variety of branching time logics over classes of trees. Here we adopt a unified approach to the Priorean, Peircean and Ockhamist semantics for branching time logics, by considering them all as fragments of the latter, obtained as combinations, in various degrees, of languages and semantics for linear time with a modality for possible paths. We then consider a hierarchy of natural classes of trees and bundled trees arising from a given class of linear orders and show that in general they provide different semantics. We also discuss transfer of definability from linear orders to trees and introduce a uniform translation from Priorean to Peircean formulae which transfers definability of properties of linear orders to definability of properties of all paths in tree

    Tableau-based decision procedure for the multi-agent epistemic logic with operators of common and distributed knowledge

    Full text link
    We develop an incremental-tableau-based decision procedure for the multi-agent epistemic logic MAEL(CD) (aka S5_n (CD)), whose language contains operators of individual knowledge for a finite set Ag of agents, as well as operators of distributed and common knowledge among all agents in Ag. Our tableau procedure works in (deterministic) exponential time, thus establishing an upper bound for MAEL(CD)-satisfiability that matches the (implicit) lower-bound known from earlier results, which implies ExpTime-completeness of MAEL(CD)-satisfiability. Therefore, our procedure provides a complexity-optimal algorithm for checking MAEL(CD)-satisfiability, which, however, in most cases is much more efficient. We prove soundness and completeness of the procedure, and illustrate it with an example.Comment: To appear in the Proceedings of the 6th IEEE Conference on Software Engineering and Formal Methods (SEFM 2008

    Secure aggregation of distributed information: How a team of agents can safely share secrets in front of a spy

    Full text link
    We consider the generic problem of Secure Aggregation of Distributed Information (SADI), where several agents acting as a team have information distributed among them, modeled by means of a publicly known deck of cards distributed among the agents, so that each of them knows only her cards. The agents have to exchange and aggregate the information about how the cards are distributed among them by means of public announcements over insecure communication channels, intercepted by an adversary "eavesdropper", in such a way that the adversary does not learn who holds any of the cards. We present a combinatorial construction of protocols that provides a direct solution of a class of SADI problems and develop a technique of iterated reduction of SADI problems to smaller ones which are eventually solvable directly. We show that our methods provide a solution to a large class of SADI problems, including all SADI problems with sufficiently large size and sufficiently balanced card distributions

    Game-Theoretic Semantics for Alternating-Time Temporal Logic

    Get PDF
    We introduce versions of game-theoretic semantics (GTS) for Alternating-Time Temporal Logic (ATL). In GTS, truth is defined in terms of existence of a winning strategy in a semantic evaluation game, and thus the game-theoretic perspective appears in the framework of ATL on two semantic levels: on the object level in the standard semantics of the strategic operators, and on the meta-level where game-theoretic logical semantics is applied to ATL. We unify these two perspectives into semantic evaluation games specially designed for ATL. The game-theoretic perspective enables us to identify new variants of the semantics of ATL based on limiting the time resources available to the verifier and falsifier in the semantic evaluation game. We introduce and analyse an unbounded and (ordinal) bounded GTS and prove these to be equivalent to the standard (Tarski-style) compositional semantics. We show that in these both versions of GTS, truth of ATL formulae can always be determined in finite time, i.e., without constructing infinite paths. We also introduce a non-equivalent finitely bounded semantics and argue that it is natural from both logical and game-theoretic perspectives.Comment: Preprint of a paper published in ACM Transactions on Computational Logic, 19(3): 17:1-17:38, 201
    • …
    corecore